How to Combine Dataframes in Python?

Estimated read time 2 min read

To combine dataframes in Python, you can use the concat() function or the merge() function from the pandas library. Here’s an example of each method:

  1. Using the concat() function:
import pandas as pd

df1 = pd.DataFrame({'A': [1, 2, 3],
                    'B': ['a', 'b', 'c']})

df2 = pd.DataFrame({'A': [4, 5, 6],
                    'B': ['d', 'e', 'f']})

combined_df = pd.concat([df1, df2], ignore_index=True)

print(combined_df)

In this example, df1 and df2 are two dataframes with the same column names (‘A’ and ‘B’). The concat() function is used to combine the dataframes vertically, resulting in combined_df. The ignore_index=True parameter is used to reindex the combined dataframe.

  1. Using the merge() function:
import pandas as pd

df1 = pd.DataFrame({'A': [1, 2, 3],
                    'B': ['a', 'b', 'c']})

df2 = pd.DataFrame({'A': [2, 3, 4],
                    'C': ['x', 'y', 'z']})

combined_df = pd.merge(df1, df2, on='A')

print(combined_df)

In this example, df1 and df2 are two dataframes with a common column ‘A’. The merge() function is used to combine the dataframes based on the common column ‘A’, resulting in combined_df. The on='A' parameter specifies the common column to merge on.

You can choose the method (concat() or merge()) based on whether you want to combine the dataframes vertically (concatenation) or based on a common column (merge). Adjust the parameters and column names according to your specific requirements.

You May Also Like

More From Author

+ There are no comments

Add yours

Leave a Reply