To concatenate DataFrames in Python, you can use the pd.concat()
function from the pandas library. This function allows you to combine multiple DataFrames along a specified axis. Here’s an example:
import pandas as pd
# Create sample DataFrames
df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df2 = pd.DataFrame({'A': [7, 8, 9], 'B': [10, 11, 12]})
# Concatenate the DataFrames vertically (along the rows)
concatenated_df = pd.concat([df1, df2], axis=0)
# Concatenate the DataFrames horizontally (along the columns)
concatenated_df_horizontal = pd.concat([df1, df2], axis=1)
print("Vertically concatenated DataFrame:")
print(concatenated_df)
print("\nHorizontally concatenated DataFrame:")
print(concatenated_df_horizontal)
In this example, we have two sample DataFrames, df1
and df2
, with the same column names (‘A’ and ‘B’).
To concatenate them vertically, we use pd.concat()
with axis=0
, which is the default value. This creates a new DataFrame concatenated_df
where df2
is appended below df1
.
To concatenate them horizontally, we use pd.concat()
with axis=1
. This creates a new DataFrame concatenated_df_horizontal
where the columns of df2
are added as new columns next to df1
.
The output will be:
Vertically concatenated DataFrame:
A B
0 1 4
1 2 5
2 3 6
0 7 10
1 8 11
2 9 12
Horizontally concatenated DataFrame:
A B A B
0 1 4 7 10
1 2 5 8 11
2 3 6 9 12
As you can see, pd.concat()
combines the DataFrames based on the specified axis, creating a new DataFrame with the concatenated data.
You can pass a list of DataFrames to pd.concat()
to concatenate more than two DataFrames. Additionally, you can customize the behavior of pd.concat()
using parameters such as join
, ignore_index
, and keys
to control the index alignment, handling of duplicate indices, and adding hierarchical indexing, respectively.
+ There are no comments
Add yours