To reset an index in Python, you can use the reset_index()
method available in pandas, a popular data manipulation library. This method resets the index of a DataFrame or a Series, providing a new default numerical index.
Here’s an example of how to reset an index using the reset_index()
method:
import pandas as pd
# Create a DataFrame
data = {'Name': ['John', 'Emma', 'Peter', 'Olivia'],
'Age': [25, 28, 30, 27]}
df = pd.DataFrame(data)
# Set 'Name' column as the index
df.set_index('Name', inplace=True)
# Print the DataFrame with the modified index
print(df)
Output:
Age
Name
John 25
Emma 28
Peter 30
Olivia 27
The DataFrame df
has the ‘Name’ column set as the index. To reset the index, you can call the reset_index()
method:
# Reset the index
df_reset = df.reset_index()
# Print the DataFrame with the reset index
print(df_reset)
Output:
Name Age
0 John 25
1 Emma 28
2 Peter 30
3 Olivia 27
In the code above, the reset_index()
method is called on the DataFrame df
, and the result is assigned to a new DataFrame called df_reset
. The new DataFrame df_reset
has a default numerical index, and the original index becomes a regular column named ‘Name’.
Note that the reset_index()
method does not modify the original DataFrame but returns a new DataFrame with the reset index. If you want to modify the DataFrame in-place, you can pass the inplace=True
parameter to the reset_index()
method like this: df.reset_index(inplace=True)
.
+ There are no comments
Add yours